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1. Introduction 

The Excalibur projectile (see figure 1) is a 155-mm cargo carrier that can be launched from towed 
and self-propelled howitzers.  This developmental projectile contains state-of-the-art guidance 
and control devices that are capable of providing mid-course trajectory corrections based on 
global positioning system satellite information.  The canard actuation system (CAS) is a sub-unit 
of the projectile that is situated forward of the payload bay and aft of the guidance module that 
contains the inertial measuring unit (IMU) and guidance signal processing.  At apogee, CAS 
deploys canards for steering control.  The four-axis CAS differs from the previous version in that 
it is not roll controlled (course correction during rotation).  All four canards can operate indepen-
dently for maximum control.  As in the previous two-axis model, the unit must sustain the severe 
gun-launch environment design load of 19,000 g’s (which includes a 1.25 safety factor) while 
supporting the mass of the guidance unit, fuze, and expulsion charge above it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Excalibur 155-mm artillery projectile with  
payload variations. 

 

2. Structural Analyses 

Two independent structural analyses were performed.  The first analysis was performed by the 
U.S. Army Research Laboratory (ARL) acting as an independent agency.  ARL used the 
ANSYS1 structural analysis code.  The other analysis was performed by the sponsoring agency, 
                                                 

1ANSYS, which is not an acronym, is a registered trademark of ANSYS, Inc. 
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the Fire Support Armaments Center at Picatinny Arsenal, New Jersey.  They performed an 
analysis using (ABAQUS)2 and took advantage of the near half-symmetry of the structure and 
eliminated small features deemed structurally insignificant.  ARL analyzed the full model.  The 
comparison of the two analyses will give decision makers a certain level of confidence in the 
modeling techniques and will allow them to make a judicial decision that balances expediency 
and accuracy.  It is envisioned that a simpler, defeatured model would allow faster turn-around 
of parametric analyses where the highly detailed model will boost confidence in the structural 
integrity of the final design. 

2.1 Analysis by ARL 

The ANSYS finite element analysis (FEA) program was employed to structurally analyze the 
four-axis CAS unit and compare results to a crush test of the unit in a laboratory testing environ-
ment.  The crush test subjects the unit to compressive loading similar to that during gun-launch 
conditions with an added 5% safety factor (analysis with the required 25% safety factor will be 
performed at another time).  Strain data from that test were compared to the strains predicted by 
the ANSYS model as a means of validating the finite element model.  Drawings and electronic 
renderings (e-Drawings3, initial graphics exchange specification [IGES] files) were received from 
Raytheon Missile Systems, Inc, the contractor for the CAS (figure 2).  They were read into 
SolidWorks4 virtual prototyping software, to prepare them for input into ANSYS.  The assembly 
shown consists of a stack of two thick aluminum plates, which houses the control mechanisms.  
They are housed in an aluminum aeroshell with attachment clamp rings on the top and bottom.  
This section sits atop the payload compartment and below the ogive.  The unit receives signals 
from the guidance section above (not shown) for in-flight navigation.  The canards are stowed 
until the projectile achieves apogee, at which point, they are deployed by squibs (i.e., small 
explosive caps), lock in position, and commence control.  The aeroshell and clamp rings hold the 
plates together in a compressive pre-load.  The plates are bolted together as well. 

The IGES files were imported into SolidWorks for refinement before being read into ANSYS.  
There, the solid model components were meshed into a structural finite element model as shown 
in figure 3.  All mating interfaces were meshed with contact elements, thus allowing the two 
parts to meet, slide, or separate, depending on the state of stress between them.  The two internal 
sections are shown in figure 4.  The aluminum housing contains these parts and the stack is 
secured by a snug ring as shown, which pre-stresses them in compression.  The two internal 
components are also held together by four bolts. 

                                                 
2ABAQUS, which is not an acronym, is a registered trademark of ABAQUS, Inc. 
3e-Drawings is a registered trademark of Geometric Software Solutions Co., Ltd. 
4SolidWorks is a registered trademark of Solid Works Corporation. 
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Figure 2.  Solid model of the CAS module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Finite element model of CAS (exploded view). 
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Figure 4.  Internal components that comprise the stack. 

The boundary conditions consistent with those from the physical test were applied to the finite 
element model of the CAS.  Two tooling parts were modeled and affixed to the top and bottom 
of the assembly as shown in figure 5.  These parts model the constraints that the actual projectile 
would impose on the CAS.  Figure 6 shows the CAS prototype in the load machine ready for the 
test.  Fifty-six strain gauges were affixed to the unit as well as a displacement transducer to 
measure overall axial deflection and a load transducer to track the applied load.  These readings 
will be presented later for comparison to the FEA model. 

2.2 Finite Element Analysis Results 

The first result examined was the overall response of the structure to axial compression dis-
placement.  These data indicate whether the global stiffness of the test specimen agrees with the 
FEA model (see figure 7).  Furthermore, it indicates whether all ten contact surfaces are 
behaving as specified according to the individual contact stiffnesses.  Most of the strain data 
comparisons are discussed later, but the overall structural stiffness is assessed in figure 8 so that 
the global boundary conditions and response can be validated before we proceed to each 
measurement location.  The global compression value modeled as –0.039 compares favorably 
with the measured response of –0.040 inch.  
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Figure 5.  Finite element model with boun- Figure 6.  Prototype CAS ready for testing. 
dary conditions. 

 
 20% gauges:  Numbers 7, 11, 21, 25, 29, 31 
 All others 5% gauges Clocking of CAS defined by lug 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Prototype CAS location of strain gauges. 
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Figure 8.  Overall compression measurement. 

For the present test, we achieved the maximum load of 131,512 lb incrementally by increasing 
the load at a rate of 5,000 lb/sec.  Strain gauge readings were taken every 1/8 second.  All data 
were written to a database file.  The readings at maximum load were extracted and are listed in 
table 1 where they are compared to the ANSYS predictions. 

Possible sources of error between the strain gauge readings and the ANSYS prediction include 

1. Grid coarseness: The strain patches will occupy an area with a varying number of finite 
element nodes underneath it.  Ideally, a large number of nodes would yield an accurate 
modeling of the strain in the area, e.g., 6 to 8 nodes under a patch.  However, central 
processing unit time and memory resources might be challenged with a large amount of 
nodes throughout the structure.  A judicial selection of a quantity of nodes will give 
acceptable results without straining computer resources. 

2. The drawings of the CAS specify an amount of pre-load on the internal stack to assure 
that they are tightly packed.  The resulting tension on the outer casing would quantify this 
pre-load but was not measured.  Although the strain would be small (<3% of expected 
total strain), it does contribute to the combined error. 
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Table 1.  Comparison of ARL predictions to actual strain gauge readings, PMP + 5% (µ strains). 

(Actual gauge reading/ANSYS estimate) 
gauge_1     gauge_2     gauge_3     gauge_4     gauge_5     
-918/-879 673 -1470/-1719 553/528 -1930/-1757 

4.2% * -16.9% 4.5% 8.9% 
gauge_6     gauge_7     gauge_8     gauge_9     gauge_10    
432/319 -1630/-1344 -192/-175 629/585 -1690/-2100 
26.1% 17.5% -8.8% 6.9% 24.2% 

gauge_11    gauge_12    gauge_13    gauge_14    gauge_15    
-2070/-1897 590/485 -1700/-1596 -197 686/785 

8.3% 17.8% 6.1% * -14.4% 
gauge_16    gauge_17    gauge_18    gauge_19    gauge_20    

-1470/-1428 -1740/-1771 496/535 -2080/-1537 299/319 
2.8% -1.8% 7.8% 26.1% -6.7% 

gauge_21    gauge_22    gauge_23    gauge_24    gauge_25    
-2160/-1319 -54 636/641 -1840/-1763 -1930/-1853 

38.9% * -0.8% 4.2% 4.0% 
gauge_26    gauge_27    gauge_28    gauge_29    gauge_30    
509/316 -1780/-1806 -37 -1580/-1293 210 
37.9% -1.5% * 18.2% * 

gauge_31    gauge_32    gauge_33    gauge_34    gauge_35    
-2500/-1605 553/335 -2360/-2332 -1360  

35.8% 39.4% 1.2% Not modeled Not modeled 
gauge_36    gauge_37    gauge_38    gauge_39    gauge_40    

   60400*  
Not modeled Not modeled Not modeled Gauge failure Not modeled 

gauge_41    gauge_42    gauge_43    gauge_44    gauge_45    
21400* -9830* 60400* -1080/-906 -931/-435 

Gauge failure Suspicious Gauge failure 16.1% 53.3% 
gauge_46    gauge_47    gauge_48    gauge_49    gauge_50    

  -60400* 118 -208 
Not modeled Not modeled Gauge failure * * 

gauge_51    gauge_54    gauge_55    gauge_56    gauge_57    
-382/-485 588/589 1040/686   

26.9% 0.2% 34.0% Not modeled Not modeled 
gauge_58    gauge_59    load  lbs disp   in 

  -131,512 -0.0400/0.0394 
Not modeled Not modeled  1.5% 

*Finite element grid too course in the area for accurate comparison. 
 

3. No material samples were cut from the structure to measure their structural properties.  
MIL-HBK-55 was the sole source of material properties.  It is assumed that they met the 
specification, but it is a pass/fail criterion.  Should the yield point exceed the specification 
by 15% (for example), it is accepted but would have an impact on the FEA. 

4. Tolerance stacking:  The drawings and IGES (universal electronic solid model) files were 
used to construct the ANSYS model.  In actuality, tolerances do exist and the 

                                                 
5Military Handbook 5, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, July 2000. 
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combination of such tolerances may affect the load sharing and pre-stress conditions of 
the structure. 

5. Strain gauge accuracy:  The strain gauges used have a guaranteed accuracy of within 3%. 

2.3 Analysis by Picatinny Arsenal 

The purpose of the Picatinny model was to provide results quickly with a simpler CAS model, 
with the ARL model providing more detailed results at a later date.  Therefore, most of the 
structurally insignificant features were removed from the Picatinny CAS model and half 
symmetry was assumed. 

The model was built from step files generated via ProENGINEER (ProE)6.  The ProE files were 
provided by Raytheon Missile Systems, Inc., the contractor for CAS.  All the threaded faces 
were tied together—the equivalent of gluing or welding the faces together.  Contact was defined 
on all the other mating interfaces simulating the interaction between touching bodies.  Since this 
model assumed half symmetry, an additional symmetry boundary condition (figure 9) was 
applied. 

       
Figure 9.  ABAQUS half-symmetry model employed by Picatinny. 

Pre-loads were applied to the model, as shown in the exploded diagram (figure 10).  Two bolts, 
the top clamp and the two internal plates were preloaded to match the load applied during 
assembly of the CAS. 

                                                 
6ProENGINEER is a registered trademark of Parametric Technology Corporation. 
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To improve the accuracy of the strain readings, the areas of interest were coated with low 
modulus membrane elements.  This places the integration points of the membrane elements on 
the surface of the part eliminating the extrapolation error with nodal values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Boundary conditions for the half-symmetry ABAQUS model. 

2.4 Finite Element Results for Picatinny Analysis 

The reaction force and displacement of the case were measured.  The displacements are 
portrayed graphically in figure 11.  The reaction force was 65,775 pounds force (lbf); this 
matches well with the applied load of 65,806 lbf.  The maximum displacement was 0.02575 
inch.  This is significantly less than the 0.039 inch from the crush test.  This may be attributable 
to part defeaturing and removal of a gap between the outer shell and load ring stiffening the 
structure. 

 

Preloaded Clamp 

Pre-loaded Bolts 

Pre-loaded Plates
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Figure 11.  ABAQUS finite element model. 

Table 2.  Comparison of Picatinny predictions to actual strain gauge readings, PMP + 5% (µ strains) 

(actual gauge reading/ABAQUS estimate, error percent below.  Because of the half-symmetry of this 
model, not all gauges were analyzed - “NA”) 

gauge_1     gauge_2     gauge_3     gauge_4     gauge_5     
NA  673/612 NA   NA NA  

 9.1%    
gauge_6     gauge_7     gauge_8     gauge_9     gauge_10    
432/423 NA -192/-25 629/620 -1690/-1537 

2.1%  87.0% (note 1) 1.4% 9.5% 
gauge_11    gauge_12    gauge_13    gauge_14    gauge_15    

-2070/-1937 590/722 -1700/-1722 -197/-488  NA 
6.4% -22.4% (note 2) -1.3 -147.7% (note 1)  

gauge_16    gauge_17    gauge_18    gauge_19    gauge_20    
-1470/-783 -1740/-1493 496/463 -208/-1835 299/445 

46.7% (note 1) 14.2% 6.7% 11.8% -48.8 (note 2) 
gauge_21    gauge_22    gauge_23    gauge_24    gauge_25    

NA -54/30 NA NA NA 
 43.9% (note 2)    

gauge_26    gauge_27    gauge_28    gauge_29    gauge_30    
NA NA NA -1580/-1420 -2360/2472 

   10.1% (note 3) -13% 
gauge_31    gauge_32    gauge_33    gauge_34    gauge_35    

NA NA -2360/-2472 NA NA 
  -4.7%   

gauge_58    gauge_59    load  lbs disp   in 
NA NA -131,512 -0.0400 

1.  Error may be attributable to tied constraints, course mesh. 
2.  High gradient; refined mesh would reduce error. 
3.  High gradient, location of gauge unclear 
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3. Conclusions 

The Picatinny model being half-symmetry will provide approximately half the number of 
locations for which to compare strain results with the ARL model.  The investigators from each 
activity have provided these analyses for the purpose of aiding the decision-making process and 
to reinforce each other’s assessment of structural integrity of the Excalibur CAS.  When half 
symmetry exists, it is expedient to choose this analytical option to reduce computation time and 
conserve computing and human resources.  However, for state-of-the-art guided artillery 
projectiles, this is true for a limited number of parts of the round.  It would be recommended to 
employ this technique as much as possible and to use the full-featured model when necessary. 
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 2 CDR USAIC 
  ATTN ATZB CDF MAJ J LANE 
   D HANCOCK 
  FT BENNING GA  31905 
 
 2 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL SL EA  R CUNDIFF 
   AMSRD ARL SL EM  J THOMPSON 
  WSMR NM 88001-5513 
 
 4 UNITED DEFENSE ADV DEV CTR 
  ATTN  K GROVES  J FAUL  T WINANT 
     V HORVATICH 
  328 BROKAW ROAD 
  SANTA CLARA CA 95050 
 
 2 NORTHROP GRUMMAN CORP 
  ATTN  A SHREKENHAMER  D EWART 
  1100 W HOLLYVALE STREET 
  AAUSA CA 91702 
 
 1 CDR US ARMY AMCOM 
  ATTN  AMSAM RD ST WF D LOVELACE 
  REDSTONE ARSENAL AL 35898-5247 
 
 1 HICKS & ASSOC INC 
  ATTN G SINGLEY III 
  1710 GOODRICH DR STE 1300 
  MCLEAN VA 22102 
 
 
 
 
 

NO.  OF 
COPIES ORGANIZATION 
 
 1 US MILITARY ACADEMY 
  MATH SCIENCES CTR OF EXCELLENCE 
  DEPT OF MATHEMATICAL SCIENCES 
  ATTN MADN-MATH LTC T RUGENSTEIN 
  THAYER HALL 
  WEST POINT NY  10996-1786 
 
 1 DIR US ARMY WATERWAYS EXPER STN 
  ATTN  R AHLVIN 
  3909 HALLS FERRY ROAD 
  VICKSBURG MS  39180-6199 
 
 1 NATL INST STAN AND TECH 
  ATTN K MURPHY 
  100 BUREAU DRIVE 
  GAITHERSBURG MD  20899 
 
 1 CDR US ARMY MMBL 
  ATTN MAJ J BURNS 
  BLDG 2021 
  BLACKHORSE REGIMENT DRIVE 
  FT KNOX KY  40121 
 
 1 DIRECTOR 
  AMCOM MRDEC 
  ATTN AMSMI RD W C MCCORKLE 
  REDSTONE ARSENAL AL  35898-5240 
 
 1 COMMANDER 
  US ARMY INFO SYS ENGRG CMD 
  ATTN  AMSEL-IE-TD F JENIA 
  FT HUACHUCA AZ  85613-5300 
 
 1 COMMANDER 
  US ARMY NATICK RDEC 
  ACTING TECHNICAL DIR 
  ATTN  SBNC-TP P BRANDLER 
  NATICK MA  01760-5002 
 
 1 COMMANDER 
  ARMY RESEARCH OFC 
  4300 S MIAMI BLVD 
  RSCH TRIANGLE PARK NC  27709 
 
 1 COMMANDER 
  US ARMY STRICOM 
  ATTN  J STAHL 
  12350 RSCH PARKWAY 
  ORLANDO FL  32826-3726 
 
 1 COMMANDER 
  US ARMY TRADOC 
  BATTLE LAB INTEGRATION 7 TECH DIR 
  ATTN  ATCD B J  A KLEVECZ 
  FT MONROE VA  23651-5850 
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NO.  OF 
COPIES ORGANIZATION 
 
 1 DARPA 
  3701 N FAIRFAX DRIVE 
  ARLINGTON VA  22203-1714 
 
 1 COMMANDER 
  US ARMY AVIATION & MISSILE CMD 
  ATTN  AMSAM-RD-SS-EG  A KISSELL 
  BLDG 5400 
  REDSTONE ARSENAL AL  35898 
 
 1 OFC OF THE PROJECT MGR 
  MANEUVER AMMUNITION SYSTEMS 
  ATTN  S BARRIERES 
  BLDG 354 
  PICATINNY ARSENAL NJ  07806-5000 
 
 1 COMMANDER  
  US ARMY TRADOC ANALYSIS CTR 
  ATTN ATRC-WBA J GALLOWAY 
  WSMR NM  88002-5502 
 
 1 FASTTRACK TECH INC 
  ATTN  J K GARRETT 
  540 CEDAR DRIVE 
  RADCLIFF KY  40160 
 
 1 DIR USARMY TACOM 
  6501 E ELEVEN MILE RD 
  WARREN MI  48397-5000 
 
  ABERDEEN PROVING GROUND 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK  (TECH LIB) 
  BLDG 4600 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL HR SC 
  BLDG 459 
 
 2 CDR US ARMY TECOM 
  ATTN AMSTE CD B SIMMONS 
  AMSTE CD M R COZBY 
  RYAN BLDG 
 
 4 DIR US AMSAA 
  ATTN  AMXSY D  M MCCARTHY 
     P TOPPER 
   AMXSY CA G DRAKE  S FRANKLIN 
  BLDG 367 
 
 
 

NO.  OF 
COPIES ORGANIZATION 
 
 7 CDR US ATC 
  ATTN CSTE AEC  COL ELLIS 
   CSTE AEC TD J FASIG 
   CSTE AEC TE H CUNNINGHAM 
   CSTE AEC RM C  A MOORE 
   CSTE AEC TE F P OXENBERG 
     A SCRAMLIN 
   CSTE AEC CCE W  P CRISE 
  BLDG 400 
 
 1 PM ODS 
  ATTN  SFAE CBD  COL B WELCH 
  BLDG 4475 
  APG EA 
 
 5 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM  J SMITH 
     E SCHMIDT  B RINGER 
     T ROSENBERGER 
     B BURNS 
  BLDG 4600 
 
 3 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM  
     C SHOEMAKER 
     J BORNSTEIN 
   AMSRD ARL WM BF  J WALL 
  BLDG 1121 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM B   W CIEPIELLA 
  BLDG 4600 
 
 3 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM BA D LYONS 
   AMSRD ARL WM BC P PLOSTINS 
   AMSRD ARL WM BD B FORCH 
  BLDG 4600 
 
 2 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM MB  L BURTON 
  BLDG 4600 
 
 7 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM BF  T HAUG 
     P FAZIO  R PEARSON 
     M FIELDS  G HAAS 
     W OBERLE  J WALD 
  BLDG 390 
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NO.  OF 
COPIES ORGANIZATION 
 
 6 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM TE  
     G THOMSON  T KOTTKE 
     M MCNEIR  P BERNING 
     J POWELL  C HUMMER 
  BLDG 1116A 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM TC  R COATES 
  BLDG 309 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL SL BG M ENDERLEIN 
  BLDG 247 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL SL EM C GARRETT 
  BLDG 390A 
 
 


